

60W Hi-Fi AUDIO POWER AMPLIFIER WITH MUTE / STAND-BY

- SUPPLY VOLTAGE RANGE UP TO ±25V
- SPLIT SUPPLY OPERATION
- HIGH OUTPUT POWER (UP TO 60W MUSIC POWER)
- LOW DISTORTION
- MUTE/STAND-BY FUNCTION
- NO SWITCH ON/OFF NOISE
- AC SHORT CIRCUIT PROTECTION
- THERMAL SHUTDOWN
- ESD PROTECTION

DESCRIPTION

The TDA2052 is a monolithic integrated circuit in Heptawatt package, intended for use as audio class AB amplifier in TV or Hi-Fi field application. Thanks to the wide voltage range and to the high out current capability it's able to supply the high-

est power into both 4Ω and 8Ω loads even in presence of poor supply regulation.

The built in Muting/Stand-by function simplifies the remote operations avoiding also switching onoff noises.

TEST AND APPLICATION CIRCUIT

January 2003 1/14

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	±25	V
Ιο	Output Peak Current (internally limited)	6	Α
P _{tot}	Power Dissipation T _{case} = 70°C	30	W
T _{op}	Operating Temperature Range	0 to +70	°C
T_{stq}, T_{j}	Storage and Junction Temperature	-40 to +150	°C

PIN CONNECTION (Top view)

BLOCK DIAGRAM

57

THERMAL DATA

Symbol	Description	Value	Unit	
R _{th j-case}	Thermal Resistance Junction-case		2.5	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $G_V = 32dB$; $V_S \pm 18V$; f = 1KHz; $T_{amb} = 12dB$ 25°C, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		<u>+</u> 6		<u>+</u> 25	V
Ιq	Total Quiescent Current	V _S = <u>+</u> 22V	20	40	70	mA
I _b	Input Bias Current				<u>+</u> 0.5	μΑ
Vos	Input Offset Voltage				<u>+</u> 15	mV
Ios	Input Offset Current				<u>+</u> 200	nA
Po	Music Output Power IEC268-3 Rules (*)	$V_S = \pm 22.5, R_L = 4\Omega,$ d = 10%, t = 1s	50	60		W
P _O	Output Power (continuous RMS)	$d = 10\%$ $RL = 4\Omega$ $R_{L} = 8\Omega$ $V_{S} = \pm 22V, R_{L} = 8\Omega$	35 30	40 22 33		W W W
		$d = 1\%$ $R_L = 4\Omega$ $R_L = 8\Omega$ $V_S = \pm 22V, R_L = 8\Omega$		32 17 28		\$ \$ \$
d	Total Harmonic Distortion	$\begin{aligned} R_L &= 4\Omega \\ P_O &= 0.1 \text{ to } 20\text{W}; \\ f &= 100\text{Hz to } 15\text{KHz} \end{aligned}$		0.1	0.7	%
		$V_S \pm 22V, R_L = 8\Omega$ $P_O = 0.1 \text{ to } 20W;$ f = 100Hz to 15KHz		0.1	0.5	%
SR	Slew Rate		3	5		V/μs
G_V	Open Loop Voltage Gain			80		dB
e _N	Total Input Noise	A Curve f = 20Hz to 20KHz		2 3	10	μV μV
R _i	Input Resistance		500			ΚΩ
SVR	Supply Voltage Rejection	f = 100Hz, Vripple = 1VRMS	40	50		dB
Ts	Thermal Shutdown			145		°C

MUTE/STAND-BY FUNCTION (Ref. -Vs)

VT _{ST-BY}	Stand-by - Threshold		1	1.8		V
VT_{PLAY}	Play Threshold			2.7	4	V
I _{q ST-BY}	Quiescent Current @ Stand-by	$V_{pin 3} = 0.5V$		1	3	mA
ATT _{ST-BY}	Stand-by Attenuation		70	90		dB
I _{pin3}	Pin 3 Current @ Stand-by			-1	<u>+</u> 10	μΑ

Note (*):

MUSIC POWER CONCEPT

MUSIC POWER is (according to the IEC clauses n.268-3 of Jan 83) the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz.

According to this definition our method of measurement comprises the following steps:

- 1) Set the voltage supply at the maximum operating value -10%

- 2) Apply a input signal in the form of a 1KHz tone burst of 1 sec duration; the repetition period of the signal pulses is > 60 sec
 3) The output voltage is measured 1 sec from the start of the pulse
 4) Increase the input voltage until the output signal show a THD = 10%
 5) The music power is then V²_{out}/R1, where V_{out} is the output voltage measured in the condition of point 4) and R1 is the rated load impedance

The target of this method is to avoid excessive dissipation in the amplifier.

APPLICATIONS SUGGESTIONS (See Test and Application Circuit)

The recommended values of the external components are those shown on the application circuit. Different values can be used; the following table can help the designer.

Comp.	Value	Purpose	Larger Than	Smaller Than
R1	22ΚΩ (*)	Input Impedance	Increase of Input Impedance	Decrease of Input Impedance
R2	560Ω	Closed Loop Gain set to	Decrease of Gain	Increase of Gain
R3	22KΩ (*)	32dB (**)	Increase of Gain	Decrease of Gain
R4	22KΩ (*)	Input Impedance @ Mute		
R5	22ΚΩ	Stand-by Time Constant		
R6	4.7Ω	Frequency Stability	Danger of oscillations	Danger of oscillations
C1	1μF	Input DC Decoupling		Higher Low-frequency cut-off
C2	10μF	Feedback DC Decoupling		Higher Low-frequency cut-off
C3	10μF	Stand-by Time Constant		
C4	0.100μF	Frequency Stability		Danger of Oscillations
C5, C6	1000μF	Supply Voltage Bypass		

^(*) R1 = R3 = R4 for POP optimization

TYPICAL CHARACTERISTICS

Figure 1: Output Power vs. Supply Voltage

Figure 2: Distortion vs. Output Power

^(**) Closed Loop Gain has to be $\geq 30dB$