SIEMENS
SIMATIC S5-101U
Programmable Controller

Programming Instructions Order No.: GWA 4NEB 810 2120-02 a

Fig. 1 S5-101U programmable controller

CONTENTS Page Page
1. THE PROGRAMMING LANGUAGE 4.2.1 Search function 4.2
1.1 STEP 5 programming language 1.1 4.2.2 Signal status display 4.2
1.2 Program structure 1.1 4.2.3 Forcing of outputs and
flags 4.2
2. PRINCIPLE OF OPERATION 4.2.4 Forcing of timers and
OF THE PC counters 4.3
2.1 Program processing 2.1
2.2 "RUN and "STOP" modes 2.2 5. PROGRAMMING EXAMPLES
2.3 Memories 2.2 5.1 Basic operations
5.1.1 Binary logic operations 5.1
3. NOTES ON PROGRAM DEVELOPMENT 5.1.2 Setting/resetting operations 5.4
3.1 Power-up 3.1 5.1.3 Load and transfer operations 5.6
3.2 Battery monitoring 3.2 5.1.4 Timer functions 5.8
3.3 Rententive/non-rententive 5.1.5 Counter functions 5.12
flags 3.2 5.1.6 Comparison (relational)
3.4 Interrupt processing 3.2 operations 5.14
3.5 Intercompatibility between 5.1.7 Arithmetic operations 5.17
LAD, CSF and STL 3.4 5.1.8 Other functions 5.17
3.6 Operation in the SINEC L1 3.7 5.2 Supplementary operations 5.18
local area network 5.2.1 Logic operations (word mode) 5.18
5.2.2 Conversion functions 5.19
4. PROGRAM START-UP 5.2.3 Shift operations 5.19
4.1 Loading and dumping a 5.2.4 Jump operations 5.20
program 4.1 5.2.5 Condition codes 5.22
4.2 Program test 4.2
6. OPERATION SET 6.1

1. The programming language
1.1 STEP 5 programming language

The user programs are written in the
STEP 5 programming language. The
statements of this language permit
not only the programming of simple
binary functions but also the pro-
gramming of complex digital functions.
Depending on the programmer used, all
three methods of representation

statement 1ist (STL)

ladder diagram (LAD)

control system flowchart (CSF)
are possible so that the method of
programming can be adapted to the
particular application. Only STL pro-
gramming is possible with the hand-
held 605U programmer. The machine
code generated by the 670/675 pro-
grammers is identical for all
three methods of representation.,

1.2 Program structure

The user program consists of up to 1024

Program block

A program block can be programmed and
documented in all three methods of re-
presentation (STL, LAD and CSF). A pro-
gram block can be translated from one
method of representation into the two
other methods with the 670/675 program-
mers provided certain programming rules
are observed (see Section 3.4).

For users familiar with contactors and
relays, the LAD method is recommended
since the ladder diagram has very close
similarities with schematic circuit
diagrams.

Program blocks are used especially
when a CRT-based programmer is avail-
able and programming or documen-
tation is to be made in graphic form.

Note: Supplementary operations must
not be used in PB1.

1.1

Statement list Ladder diagram Control system flowchart

Programming with mnemo-| Programming with gra- | Programming with gra-
nics of the function phic symbols similar to | phic symols
designations schematic circuit diagrams

to to to
DIN 19 239 (draft) OIN 19 239 (drcft) 1EC 117-15

DIN 40 700
DIN 40 719
DIN 19 235 {draft)
STL, LAD CSF
AN 1 H
AN HAHHR i
ON I .ii
4 —
Fig. 2: Methods of representation with

the STEP 5 programming 1anguage

Function block

Function blocks can only be written

and documented in STL form.

Jump operations make it possible to
enhance the structuring of the user
program and thus also its capabilities.
Short, constant response times to inter-
rupts can be implemented with load and
transfer operations in conjunction with
jump operations (see Section 3.4).

2, Principle of operation

2.1 Program processing

The control functions of the 101U are
defined by a user program.

In order to be able to scan the user
program cyclically statement by state-
ment, the CPU has to perform the follow-
ing functions:

1. In the case of a cold restart (power
switch from "Off" to "On" or mode
selector from "Stop" to "Run"), the
process output image* is erased,
i.e. all outputs are set to zero.

2. The process input image* is updated,
i.e. all signal statuses of the in-
puts are scanned and written into
the process input image.

3. The user program (PBl or FBl) is
scanned and processed statement by
statement. When scanning the signal
statuses of the inputs, the CPU ac-
cesses the process input image and
not the actual inputs. When latching
and unlatching the outputs (coils),
only the process output image is
overwritten to begin with.

4., Once the user program has been pro-
cessed, the process output image
is transferred to the actual out-
puts.

5. Points 2, 3 and 4 are handled cycli-
cally.

A scanning operation from cycle check-
point to cycle checkpoint takes approx.
70 ms for 1024 statements (binary).

If a scanning cycle is not completed
within 300 ms due to program errors

or faults, an internal monitor responds,
the PC enters the "Stop" status and

all outputs (coils) are switched off.

(Cold resfur'r)

Erase process
output image

~—»= Qutputs

¢+— Cycle checkpoint

Read process
input image

——r

Inputs

User program
1st statement

2nd statement

last statement

To24b

Transfer process

] output image to - —= Outputs

the outputs

Fig. 3: Principle of operation of the

S5-101U

* Process I/0 image:
Internal memory area in which the
signal status ("0" or "1") of the
inputs/outputs is stored.

2.1

2.2 The ”Run” and ”’Stop” modes

"RUN" mode

In the "RUN" mode, the program is scanned
cyclically from cycle checkpoint to
cycle checkpoint. The PC is brought

into the "RUN" mode by

- switching the mode selector to "RUN"

- selecting the "PC RUN" function of
the programmer (mode selector in "RUN"
position)

- and on recovery of the power supply
if the mode selector is at "RUN" and
was in the "RUN" position prior to
the power failure.

2.3 Memories

The PC has an internal program memory,
the data of which can be supported for
three years by a backup battery.

There are also two different memory
submodules (see Fig. 4).

"STOP" mode

In the "STOP" mode, the program is not

scanned and the outputs (coils) are

disabled. While the PC is in the "STOP"

state, all timers and counters and the

process I/0 image retain the values

or states they had in the last scanning

cycle prior to the PC entering the "STOP"

state. If the PC is switched to "RUN",

the timers and counters (0...7) are

reset. The non-retentive flags and the

process I/0 image are erased.

The PC is brought into the "STOP" mode

by

- switching the mode selector to "STOP"

- selecting the "PC STOP" function on
the programmer

- faults or errors in program scanning,
e.g. time-out or operations that can
not be interpreted by the PC.

The cause for the PC entering the "STOP"

state can be traced with the aid of

the "DISPLAY ISTACK" function of the

programmer (see Section 4.2 of Operating

Instructions).

The memory submodules are used for pro-
gram dumping or for copying the program
should only one memory submodule be
used for a number of PCs.

On power-up or when the PC is switched
to "RUN", the contents of the memory
submodule are always copied into the
internal memory and processed there.

Memory submodule EPROM EEPROM

Program PG 615 (with adapter 984-2UAll) PG 615

dump PG 670 (with adapter 984-0UA1l) PG 670 (without 984

PG 675 adapter)

PG 675

Program Only with special UV Tlamp Direct in the PC with

erasure (erasure time: 30 min) the above programmers
and the PG 605U pro-
rammer
Programmer function:
PG PC)

Program modi- Only possible

fication via erasure of entire

programmer program possible

Fig. 4: Differences between the EPROM and EEPROM submodules.

2.2

3. Notes on program development
3.1 Power up

When the power supply is switched on

or on recovery of the power supply after
a power failure, the PC assumes the
following states without having to

take any additional measures in the

user program:

Current position Operating mode Error Operating
POWER OFF of mode selec- of PC prior to identi- mode follow-
tor of the PC on power-up fier* set | ing power-up.
power-up
POWER ON T STOP —a= STOP
RUN T STOP —a= STOP
RUN 7. YES = STOP
NO ————== RUN
Fig. 5: Automatic mode setting * A fault has occurred in program scanning
following power-up and the reason for this is stored

in the interrupt stack.

Prevention of automatic restart in Preventing automatic restart on battery
general failure
Flag* F 63.7 can be used to prevent Flag F 63.6 can be used to prevent auto-
automatic restart on power-up. matic restart on battery failure (reten-
This flag is set by the operating tive flags reset).
system of the PC on power-up if Flag F 63.6 is set by the operating
the "RUN" mode is set and was set system of the PC on power-up if the
prior to power-down. In order to backup battery fails or is not connec-
enable manual restart, flag F 63.7 ted. The PQ must be set to the "RUN"
is reset in the "STOP" mode. It can mode in this case.
also be reset by the user program (e.g. Flag F 63.6 1s.reset by the "ERASE
in conjunction with an input signal). PROGRAM" function or by the user pro-
gram (e.g. in conjunction with an input
* Internal relay equivalent signal).
Programming example Programming example
T AF63.70\ = F63.72 "1" 7~ AF63.6 Y Fge3.62"1"
{ BEC I ! BEC '
| | !
| User- !] User =
| | program || || program ||
: ! :"-F63.7£"0“ | ' y~F63.6£"0"
| I i |
\| B ' \| BE

3.1

3.2 Battery monitoring

Flag F 63.6 is used for monitoring the
battery.

This flag is set by the operating system
of the PC on power recovery and during
the normal scanning cycle if failure

of the battery backup voltage is detected.

The PC must be in the "RUN" state.

Flag F 63.6 is reset by the "ERASE PRO-
GRAM" function of the programmer or by
the user program. The user can therefore
determine how the PC is to react to
backup battery failure.

3.3 Rententive/non-rententive flags

The S5-101U has a total of 512 flags.
The flag area is subdivided as follows:

Retentive flags (F 0.0...F 31.7)

- retain their last state prior to -
power-down on power-up (with backup
battery only)

- retain their last state when the
mode is changed from "STOP" to "RUN"
(with and without backup battery)

- are reset like the non-retentive
flags on power-up (without backup
battery)

- can also be reset by the user pro-
gram ("ERASE PROGRAM" function).

By using retentive flags, the last
status of the plant or machine prior
to the PC leaving the "RUN" mode can
be stored. On restart, the plant or
machine can resume operations at the
point at which it was stopped.

3.4 Interrupt processing

When an interrupt signal (e.g. emer-
gency off) from the process is re-

ceived by the PC, the latter inter-

rupts cyclic scanming of the user program
and inititates the processing of a
specific interrupt routine.

Interrupt processing with the S5-101U

is defined exclusively by the user pro-
gram so that each input and output can

be used for interrupt processing.

3.2

Non-retentive flags (F 32.0...F 63.7)

- are reset when the PC mode changes
from "STOP" to "RUN" and on power-up.

Flags F 61.0 - F 62.7 are reserved
as coordinating flags for operation
in the SINEC L1 local area network;
flags F 63.0 - F 63.7 are reserved
as system flags. Since they are af-
fected by the PC operating system,
they must not be used as flags in
the normal sense.

In order to achieve minimum response
times, the inputs and outputs are re-
ferenced direct, i.e. outside cyclic
program scanning. The load/transfer
operations "LPB" (inputs) and "TPB"
(outputs) are available for this pur-
pose.

A more or less constant response time

is achieved if the scanning of the in-
puts programmed by the user as interrupt
inputs is uniformly distributed over

the entire user program. Fig. 6 shows

a user program with interrupt processing.

Task: When input I 0.0 becomes "1",
outputs Q @.6... Q 0.7 are to assume
the state of flags F 3.0...F3.7. In
order to keep the response time as
short and constant as possible, ten
interrupt scans should be written in
the user program.

STEP 5 program (STL) Explanations
o L PBG lst interrupt scan: by loading PB O,
T FBY I 0.0 is scanned direct, i.e. by-
A F 0.0 passing the process image, and mapped
S F 10.0 on F 0.0. If F 0.0 (and consequently
Jc =M I 0.0) is "1", a jump is made to the
ML :R F 1.0 interrupt routine. F 10.0 defines the
return address.
L PBO 2nd interrupt scan
T FBO
A F 0.0
S F 10.1
User < JC -
program M2: R F 10.1
L PBO 10th interrupt scan
T FBD
A F 0.0
S F 11.1
JC =Md
§ Mig:R F 11.1
~ MO L FB3 — Flag byte FB3 is transferred direct into
T PB(peripheral byte PB @, j.e. direct to
the outputs. The process output image
A F 10.0 is updated.
JC =M1 By scanning flags F 10.0...F 11.0 (only
Interrupt <: A F 1¢4.1 one flag is used), the user program is
routine Jc =M2 continued at the return address last
. defined.
A F11.1
~ g =Mg -

Fig. 6: Example of a user program with interrupt scanning

3.3

3.5

General

Each of the methods of representa-
tion in the STEP 5 programming
languages has specific properties

and limitations.

Consequently, a program block written
in STL cannot simply be displayed as
an LAD or CSF and the graphic methods
of representation, LAD and CSF, may
not always be fully compatible.

In other words, one form cannot al-
ways be translated back into the
other form.

If the program has been entered as

an LAD or CSF, it can always be trans-
lated back into STL form.

The aim of this section is to establish

a number of rules, which, if adhered to,
will ensure complete compatibility be-
tween the three methods of representation.
These rules are classified as follows:

- Rules for compatibility between the
graphic methods of representation
(LAD and CSF).

If these rules are followed, input is

possible in one graphic form and display
in the others.

- Rules for compatibility between the
statement list and the graphic methods
of representation.

If these rules are observed, it is
possible to enter a program in any if
the three methods of representation,
graphic or not, and to have it dis-
played in the other two forms.

Intercompatibility between LAD, CSF and STL

STL

Fig. 7: Range and limitations of the
methods of representation in the
STEP 5 programming language

“Input Output

Fig. 8: Graphic input

Input OQutput

/—\‘

Fig. 9: Input in the form of a statement 1ist

3.4

Input as LAD and display as CSF (STL)

Rule: Do not exceed the display
boundaries for LAD.

Excessive nesting may cause the LAD
display boundary to be exceeded

(8 levels)

100 161 10.2 143 Q0o
—] —+—] [11 1 C + + —()—
1a4
— (—+————
105
—1 [— '
10.6
r] L t t }
max. &
IM—1 g
[a41— >:1
I 04— 8
[102— K] CSF
195 2
103— >=1
106 |-Q0g
Fig. 10: Example of maximum LAD nesting for display as CSF
Input as CSF and display as LAD (STL)
Rule 1: Do not exceed the display
boundaries for LAD.
Too many inputs on a CSF box cause
the ladder diagram display boundary
to be exceeded.
161
=
104 —
[0S —
106 —
107 — —Q1.0
max.7
191 10.2 [03 10.4 105 10.6 107 Q10
r—] [—)] [——) [—+—) [—+— 1 [—+—1] I —73 —+—()—{LAD

Fig. 11: Example of a maximum AND box in CSF form for display as an LAD

Rule 2: The output of a complex ele-

ment (memory, comparator, timer and
counter) must not be ored.

o —

M1 —

12—

— Q1.0

Fig. 12: Only AND boxes are allowed in CSFs after a complex element.

Input as STL and display as LAD or CSF

Rule 1: A complex element must not have
a preceeding operation.
Rule 2: The inputs and outputs of com-

plex elements must be programmed in

the order in which they are assigned

parameters on the screen in graphic
mode.

Times and counts are exceptions since
the relevant value must first be stored
in.the accumulator with a load operation.

c

f oy > M m
m o> >

STL

1¢2
KT919.2
T

Q10

101
1
10.2
1
103
K5150

1
Q19

LAD

102
3 [—+]
L KT10.2 —]

In addition, every unused input or out-
put must be assigned an NOP O operation.
In the case of timers and counters, the
set input and the input for loading the
time (TW) or count (ZW) must be dis-
abled together.

Q19

-

Fig. 13:‘Examp1e for assigning NOP operations to unused inputs and outputs

3.6

3.6 Operation in the SINEC L1 local area network

The SINEC L1 local area network is used
for interconnecting programmable con-
trollers of the low-end performance
range and operates on the Master-Slave
principle.

The CP 530 communications processor

is always the Master, and the slaves

the CPUs of all small PCs. Each slave

is assigned a slave number under which
it is referenced. Data can be inter-
changed between the master and up to

30 slaves, as well as between the indi-
vidual slaves. In the case of the S5-101U,
the slave number, the coordinating flags
and the send and receive mailboxes are
defined as follows:

Slave number
The slave number is stored at the beginning

of the user program (PB1/FBl) together
with an indentifier.

RECEIVE coordinating flag byte (KME)

Flag byte FB 61 is used.

M61.7 M61.0

Receive error in last transfer

I ERROR with master

SLAVE FAIL Aslave in the network has failed

BUS-RUN _ BUS s in RUN state

PG-BIT Programmer requests the bus access

INTERRUPT This message is accompanied by an interrupt

EMPF-ERK Operating system may accept data from the bus into
the receive mailbox

[] Bit from bus master

In addition to the actual data, control
and security information, which the

STEP 5 user program can access through

a coordinating flag word, is also trans-
mitted.

The actual data are deposited in a receive
mailbox and a send mailbox which the

user can access with load and transfer
operations.

PB/FB

header
SF63.0 Identifier
LKF .. Nos. 1...30

SEND coordinating flag byte (KMS)

Flag byte FB 62 is used.

M62.7 . . . M62.0

[(TTYFPITF]

Send error in last transfer
ERROR with master

Slave permits programmer access

PG-BIT
INTERRUPT

Slave requester bus interrupt

SEND-ERK User releases send mailbox for sending to the‘bus

D Bit for bus master

The coordinating flags are affected by the operating system of the PC and
can therefore not be used as flags in the normal sense.

3.7

Receive mailbox

The receive mailbox is in data block
DBl (DW 40...DW72) and has the following

structure:
DL 40 LENGTH of net DR 40 SOURCE-SLAVE No. DW 40
(0...64) ~ (0...30)
DL 41 1st item of data | DR 41 | 2nd item of data DW 41 \
DL 42 3rd item of data | DR 42 4th item of data DW 42
. X : : Nett
data
DL 71 6lst jtem of data|DR 71 62nd item of data DW 71
DL 72 63rd item of data|DR 72 64th item of data DW72 |/
1) -
Slave No. @ = Master
Send mailbox
The send mailbox is in data block DB 1 (DW88...DW 112) and has the
following structure:
DL 80 LENGTH of nett data| DR 80 DESTINATION SLAVE No.| DW 80
(0...64) (0...30)
DL 81 1st item of data DR 81 2nd item of data = | DW 81 N\
DL 82 3rd item of data DR 82 4th item of data DW 82
Nett
data
DL 111 6lst item of data [DR 111 | 62nd item of data DW 111
DL 112 63rd item of data | DR 112 | 64th item of data DW 112 | J

1) Slave No. @ = Master

For more detailed information on the SINEC L1 local area network, please refer to the

InstruEtions (4NEB 811-0545) and Programming Instructions (4NEB 811-0546) of the SINEC L1
network.

3.8

4. Program Start-up

The hand-held PG 605U/615 programmer The following settings are necessary
and the CRT-based PG 670 and PG 675 on the-PG 620 and PG 675 programmers
programmers can be used for loading in conjunction with the S5-1101 U pro-
and testing programs. grammable controller:

PG 670: S5-150 AK S5-130 W
PG 675: S5-150 S NO

4.1 Loading and dumping a program

Before loading the program, the "ERASE When the program has been loaded, it

PROGRAM" function must be executed. is transferred from the programmer memory

This deletes to the internal memory of the PC. If

- the internal program memory of the PC an EEPROM submodule is plugged in, the

- the binary process I/0 image program is automatically dumped.

- all flags Once the program has been transferred

- error identifiers and the causes of to the PC memory, it is no longer in
interrupts. the programmer memory and must be brought

back into the latter before program
corrections can be made*

(output FB1/PB1).

Dumping of the program in an EPROM sub-
module is possible on the PG 615 (with

adapter), PG 670 (with 984 adapter)
Grogrum loading) and PG 675 programmers.
To dump the program in an EPROM sub-
v module, proceed as shown in Fig. 14,
Put PC to STOP r——————— w
v I
l (Dump program }
Erase program |
v | v
Load program : Put PC to STOP
info programmer | w
F 1 l Transfer program™
Transfer program Carry out any pro- ' from PC to pro-
from programmer gram correc tions grammer
to PC) | v
V Transfer program™ ! Plug EEPIRW
Set PC fo RUN from PC fo pro- submodule in
grammer | &
v A | Transfer program
from rammer
Test program Set PC to STOP | et
v 4 I ¥
Is program execu- \ no I Wu.if uf\fil program-
ting properly? | ming is completed H
])

= Necessary only in the case
(End) of the 605U programmer C End)
Fig. 14: Schematic of a program loading operation followed by the
dumping of the program in an EEPROM submodule

4.1

4.2 Program test

Faults causing the PC to enter the
“"STOP" status can be identified with
the aid of the interrupt stack (see
Instructions, Section 4.2)

The following debugging functions are
available for tracing logic errors in
program scanning.

421 Search function

The programmer "Search" function is
available for locating points in the
user program.

In the test phase, for instance, all
points in a program containing a de-
finite operand can be displayed, e.qg.
an output not acting as expected.

The following search keys can be used:
- Statements, e.g. Al 1.0

- Operands, e.g. I 1.0

- Labels (FB 1 only)

- Addresses

Search runs are important in conjunction
with the following functions:

- Input/correction

- Display

- Program-dependent signal status display

For more details, please refer to the
Operating Instructions of the programmers.

4.2.2 Signal status display

The following programmer functions are
available for displaying the signal
statuses of binary and digital operands:

Direct signal status display

The status of any operands can be ob-
served at the cycle checkpoint (Sec-
tion 2.1) with the aid of this function.

Program-dependent signal status display

This test function enables the signal
status of an operand and the result

of the logic operation to be observed
when the selected statement is processed.

4.2.3 Forcing of outputs and flags

The “FORCE" function enables definite
binary and digital operands to be in-
fluenced with the PC in the "RUN" mode.

The desired statuses of the operands
are entered from the programmer byte
by byte and transferred to the PC.
The following can be forced:

- QB O0... QB3

- FB 0...FB 63

4.2

In this way, it is possible to force
definite outputs on system startup without
the user program and check the correct
wiring of actuators and indicators etc.
When forcing while a user program is
executing, the operand statuses entered
are transferred once to the PC and program
scanning resumed with these statuses
entered may be modified by the current
program.

4.2.4 Forcing of timers and counters

Timers and counters can be forced
in both operating modes of the PC,
using the 605U, 615 and OP 393
programmer only.

Programming (from version 1.1 onwards)

Data words DW @ to DE 15 in data block

DB 1 are reserved for the preset values
for timers and counters.

In the user program, reference is made

to the associated data word when timers
and counters are started.

T 15
Eg NG to 15 [DW15

If both timers and counters are to
be forced, different numbers should
be used, e.q.

T@...T7—=DW Q...0W7
C 8...C 15—=DW 8...DW 15

A maximum of 16 timers/counters
in any combination can be forced.

The following program is required
in the PC:

LDw @ | LKT is replaced
SIT @ | by LDW

LW 1 | LKC is replaced
SC1 | by LDW

Make sure that there are meaningful

time values in the data words used when
changing from the "STOP" to the "RUN"
mode. It is advisable to force the timers/
counters (with the preset values) in

the "STOP" status of the PC.

Forcing with the programmer

The data word assigned to a timer

or counter is loaded with the preset
value, using the "Direct signal status
display" function of the programmer.

The data block for the preset value

can be selected on the programmer

(but DBl s mandatory for the S5-101U PC).

Programming (from version 1.2 onwards)

Data words DW @ to DW 15 in data block
DB 1 are reserved for the preset values
for timers and counters.

In the user program, reference is made
to the associated data word when timers
and counters are started. -

T@-=DWO to T 15-=DW 15
C §—=DW 15 to C 16-=DW 31

16 timers and 16 counters can be forced.

The following program is required in
the PC:

LDW @ LKT is replaced by
SPT @ LDW

LOW 16 LKC is replaced by
SC 1 LDW (16...31)

For further information, please refer
to the Programming Instructions of the
605U programmer in the Section entitled
"PROGRAM TEST—==Forcing of timers and
counters."

4.3

5. Programming examples

5.1 Basic operations
5.1.1 Binary logic operations

AND logic

Original STEP 5 representation
Statement Control system
list diagram flowchart
13 1MM3N17 Qn
1}111.7 T ny AA§ ;13 BB ?1 11 =
' ' ' 113 —
13 Al 17
& 1.7 H Q1.0
\ =014 v

A "1" signal appears at output Q 1.9
when all the inputs have "1" signals
simultaneously.

A "0" signal appears at output Q 1.0
if at least one of the inputs has a
"0" signal. _

There are no restrictions imposed
on the number of scans and the pro-
gramming sequence.

OR logic

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
0112 11.2 Q12 112 457
0117 117 -
0115 n7 ns -4 a2
=012

115

A "1" signal appears at output Q 1.2
if at least one of the inputs has a
"1" signal.

A "0" signal appears at output Q 1.2

“when all inputs have "0" signals si-
multaneously.

5.1

There are no restrictions imposed
on the number of scans and the pro-
gramming sequence.

AND before OR logic

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
115116 11411.3 115116 Qi
Al 15 5=
[1] 15 \I14 AT 16 B
2K 6 \I13 0 B 116 =
' Al 14 14113 =1
=7 Q11 Al 13 M4—E
=Q 1
ann 113 —~Q1.1
A "1" signal appears at output
Q 1.1 when the output of at least
one of the AND gates is "1".
A "0" signal appears at output
Q 1.1 when neither of the AND
gates has "1" at its output.
OR before AND logic
Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
19N 43 ng 3 0118 119 a1 110 57
o IR o - nd SIh 111 %
w AT 112 —>=
] T Al 113
0I12 113 — -
C)J 113 —Q1.1
Q1.1 a1t =Q 1

A "1" signal appears at output Q 1.1
if input I 1.0 or I 1.1 and one of
the inputs I 1.2 or I 1.3 have a "1"
signal.

A "0" signal appears at output Q 1.1
when input I 1.0 has a "0" signal
and the AND gate has a "O" at its output.

5.2

OR before AND logic

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
N4 115129121 Al 114 120 azp 1.6 ==
[11 e \iis
0I14
z1 21 : 0I15 115 &
120 \I21) 15 121
ltﬁ Al 12.0 >=1
Q30 01l 24
Q2.0 0I21 121 - —02.0
)
=020
A "1" signal appears at output Q 2.p
when both OR gates have "1" signals
at their outputs.
A "0" signal appears at output Q 2.0
when at least one of the OR gates
has a "0" signal at this output.
Scanning for ”0” signal status
Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
' 115 Q29
I1.15121.6 A 15 lJ){ 115—%
ANI1.6 116
s =020 11.6-q__}-020

A "1" signal appears at output
Q 2.0 only when input I 1.5 has
a "1" signal and input I 1.6 a
"0" signal.

5.3

5.1.2 Setting/resetting operations

RS flip-flop for latched signal outputs

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
114117 ‘7;2‘753 117 Q15 Q15
R EF 1175
T 114
Q15 R Q
—R Q
Q15 I 14

A "1" at signal I 1.7 sets the flip-

flop.

If the signal at input I 1.7 changes
to "0", this status is maintained, i.e.

the signal is latched.

A "1" at input I 1.4 resets the
flip-flop.

If the signal at input I 1.4 changes
to "0", this status is maintained.

RS flip-flop with flags

If the set (input I 1.7) and reset
(input I 1.4) signals are applied
simultaneously, the scan operation
last programmed (in this case AI 1.4)
remains effective during processing
of the remaining program.

s only necessary if program is
to be represented in LAD or CSF form
on the 670/675 programmer. When
programming with LAD or CSF, these

NOP @ operations are automatically
included.

Original STEP 5 representation
Statement Ladder Control system
list diagram . flowchart

3116 —p—1— A 113 113 F17

I1.3 \I16 R F17 Hr I P17

AT16 . 13 —R

E%i S F17 116 gns

F17 AF17 Hs afF---« 116—s al-Q14
F17 = Q14

A "1" at input I 1.6 sets the flip-

flop.

If the signal at input I 1.6 changes
to "0", this status is maintained,

i.e. the signal is latched.

A "1" at input I 1.3 resets the
flip-flop.

If the signal at input I 1.3 changes
to "0", this status is maintained.
If the set (input I 1.6) and reset

(input I 1.3) signals are applied si-
multaneously, the scanning operation
last programmed (in this case AI 1.6)
remains effective during processing of
the remaining program, i.e. flag F 1.7
is set (setting signal has priority over
the resetting signal). .
5.

Implementation of a transition-sensitive pulse (pulse edge evaluation)

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
n7 o I 17FLO F 20 F4.0 L I
n_FLﬂ =0 FEV/E—#)— Foo{ ——#H)—T5
s 1 [———r
F 29 117 I17—1R_0

The AND logic condition (AI 1.7 and The AND logic condition AI 1.7 and

AN F 4.0) is fulfilled at each posi-
tive-going edge of the signal at in-
put I 1.7 and flags F 4.0 and F 2.0

("Pulse edge flags") are set if the

resu;t of the logic operation (RLO)

is " II.

Binary scaler (T or trigger flip-flop)

AN F 4.0 is no longer fulfilled at
the next program scan since flag
F 4.0 has been set.

Flag 2.0 is reset, i.e. it is only
“l" during a single program pass
or scan.

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
114
T 2 g Fig Q1L Qg
| 119 S 3 35 11.0 % <
T A 118 Fig F10
-V |a1g 2 — 3 R 119
11g qig F10 n R
as | & /03 F19 7
A 1g Qaug 119 —q & s
S /3R QLo
A
A 14 & R
R Q1p

Output Q 1.8 changes its state on a po-

sitive-going transition at input 1.0.

A negative-going change at the input has

no effect on the output.

5.5

If a defined frequency is applied to the
input, therefore, half the input frequency

appears at the output.

5.1.3 Load and transfer operations

Load and transfer

Oper- Parameters Function
ation
Lgg Load

I8 0tob an input R{te
(from PII

Iw 0 to4 an input word
(from PII)

Q8B 0 to3 .| an output, byte
(from PIC%/)

QW 0 to2 an output word
(from PIO)

FB 0 to 63 a flag byte

FuW 0 to 62 L a flag word

DR 1 to 255 data
(right-hand byte)

DL 1 to 255 data
(1eft-hand byte)

DW 1 to 255 data
(word)

PB 0tob a peripheral byte
of the digital I/0
modules (bypassing
the PIO)

T 0 to 15 a time (b1nary)

cT 0 to 15 (BCD)

c 0 to 15 a count (binary)

cC 0 to 15 (BCD)

KM3) random bit | a constant as

(16 bits) |[bit pattern

K H3) 0 to FFFF |a constant in
hexadecimal code

Kk F3) - 32768 to | a constant as

+ 32767 fixed-point number

k v3) 0 to 255 a constant,

for each 2 bytes
3) byte
KS 2 random a constant, 2 ASCII
alpha- characters
numeric
3 characters
k 13) 0.0 to a time (constant)
999.3
Kk ¢3) 0 to 999 a count (constant)
Note:

The programmable controller has two
accumulators (16 bits) for relational
and arithmetic operations and for digital

logic.

Loading implies that the contents of
accumulator 1 are relocated to accu-
mulator 2 and that accumulator 1 is

reloaded in keeping with the operand
of the load operation.

After two load operations, therefore,
information can be obtained, for example,
on the contents of the accumulators

in connection with relational or com-
parison operations.

.Enmple Liwi1 \M" Accum 2 1.

Liw3

T Qw1

Qw1

[wa]

N

[wa]
s]

e
o
] -«
e
o]«

The transfer operation always transfers
the contents of accumulator 1 to the
operand specified in the transfer oper-
ation. The contents are not changed.

Oper- Parameters Function
ation
TOO Transfer
18 0to5 an input b¥§e
(from PII
Iw 0 to4d an input word
(from PII)
Q8B 0 to3 an output hyte
: (from PIO ¢/)
QW 0 to 2 an output word
(from PI0)
FB 0 to 63 a flag byte
FB 0 to 62 - a flag word
DR 1 to 255 data
(right-hand byte)
DL 1 to 255 data (left-hand
byte)
DW 1 to 255 data (word)

Load and transfer operations are ab-
solute operations, i.e. they are carried
out independently of the result of

the previous logic operation.

Graphics programming of load and transfer

operations is only possible indirectly

in connection with timer and counter

?perat1on, otherwise only in statement
ists

When loading/transferring FW, IW and
QW, the following relationship between
the accumulator contents and the byte
belonging to a particular word applies:

B o0 [t [z [e
Q

’ . N \
Accumulator Accumulator
contents contents
15 0 5. 0

When 1oad1ng an FB, IB, QB or PB, the
byte is always 1oaded in the 1ow byte
of the accumulator. O is written into
the high byte of the accumulator.

When transferring an FB, IB, QB or PB,
it is always the low byte of the accumul-
ator that is transferred.

1) PII process image of inputs
2) PIO process image of outputs
3) Four-byte instruction with the opcode

in bytes 0/1 and the constant in bytes 2/3

5.6

Loading and transferring a time
(see also under timer and counter operations)

Original STEP 5 representation C
Statement Ladder f?ntrgl system
1ist diagram owchart
AT 2.0 120 _T10 710
\, Load SPT10 KTIS004cv erl-rw2o| [KT1500-cv ;b Fw20
- DE DE |-
L T10 R_ 23 o

Transfer

FwW20

During graphic input, FW 20 was assigned Outputs BI and DI are digital outputs.

to output BI of the timer. The time appears in binary code (BCD
with time base) at output BI (DE).

The programmer automatically stores

the corresponding load and transfer

operation in the user program. In this

way, the contents of the memory location

addressed with T 10 are loaded into

accumulator 1.

The contents of accumulator 1 are then

transferred to FW 20.

The time T10 in binary code in this
example can be traced at FW 20.

5.7

5.1.4 Timer functions

Timers are restarted on power recovery

Pulse following a powerfail condition.
Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
124 129 T1 T1
—3 Hn 120—1n
F10s” KTige—{cv s1p- KTp2—cv srf
T
‘ pE} DEl
Q1¢
Q1d R aH H —RrR al-Qq1.0

The timer is started during the first
scanning cycle if the result of the

logic operation is "1".

The timer re-

mains unaffected during subsequent scan-
ning resulting in "1" signal.

The timer is set to "0" (reset) if the

result of the logic operation is "O".

The AT and OT scans result in a "1"
signal as long as the timer is running.

Extended pulse

The timer is loaded with the specified
value (10). The number to the right

of the point indicates the time base:
02 0.01 s 221s

120.1 s 3=10 s

DRI
i

BI and DE are digital outputs. The time
appears at output BI (DE) in BCD.

12.0@
atg 4

KT10.2£101s = 10s

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
| 12.0 L KT10.2 — H1nv 12.0 {1nv
) S ET1 KT
:ans T NG PO 10.21CV BI KT1024cv BI}
m NOPO DE}- DE|-
l ganil NOPG
Q1.0 AT 1 01.0
01.0 =Q 1.0 —R Q H 4R Q—Q01.0

The timer is started during the first
scanning cycle if the result of the

logic operation is "1".

The timer remains unaffected if the
result of the logic operation is "O".

The AT or OT scan results in a "1" signal
as long as the timer is running.

120 4 —H

010§
T —ef

ol

5.8

”ON” delay

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
115 A 115 IS T3 T3
L KT9.2 T—i0 115 41+—0
oL SRT 3 _—i E-
4 -cv B8If— —{cv
930 13 KT92-¢ KT 92 BI[
DE[— DE
Q12
Q12 =Q 1.2 —r - M —r ab-Q1.2

The timer is started during the first [15
scanning cycle if the result of the Q12
logic operation is "1". The timer remains
unaffected during subsequent processing

e

if the result of the logic operation The timer is loaded with the specified

is "1", value (9). The number to the right of
the point indicates the time base:

The timer is set to "0" (reset) if the 02 0.01 s 22 1s

result of the logic operation is "0". 12 0.1 3210 s

The AT or OT scan results in a "1" signal Outputs BI and DE are digital outputs.

when the time has elapsed and the result The time appears at output BI (DE) in

of the logic operation is still present BCD.

at the input.

Latching “ON” delay

Original STEP 5 representation

Statement Ladder Control system

list diagram flowchart

She | s 1

AI1.6] |] -

RTI. KT92—CV BI K79.2 4CVvV BI

DEf— DE

AT 4 11.6 Q1.3

=013 —3IHR_ 0 | 11.6 {R__0}-0a13
The timer is started during the first The AT or OT scans result in a "1" signal
scanning cycle if the result of the when the time has elapsed. The signal
logic operation is "1". status only becomes "0" if the timer

is reset with the RT operation.
The timer is unaffected if the result

of the logic operation is "O0". 11,6 I

11_5_.r—___{:_
Q1.3 LT

5.9

”OFF” delay

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
114 Al1é
L KT100.0 I11.4 TS5 TS
SFT5 — HO0—T I1.46 0T
g ts KTH0ed{cv BI}- KT1000—{CV BI}
L A TS DE Zo DE
Q0.4 = 004 4
[J00.4 R Qa Dan —R Q004
The timer is started during the first 114 .
scanning cycle if the result of the Q04— T I T 1
logic operation is "0". The timer remains ~ATk ATk

-unaffected during subsequent processing
if the result of the logic operation
is "0".

The timer is set to "0" (reset) if the
result of the logic operation is "1".

The A T or OT scan results in a "1"
signal if the timer 1is running or if
the result of the logic operation is
still present at the input.

The timer is loaded with the specified
value (9). The number to the right of
the point indicates the time base:

02 0.01 s 22ls

12 0.1 s 3210 s

n

Outputs BI and DE are digital outputs.
The time appears at output BI (DE) in
BCD.

5.10

Clock pulse generator

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
g 17 T7
ANF 2.0 F2
LKT 191 | E—{"—0 F2.g —q4T—0
G F2$ KT —cv sr} KT10.1 —{ev Bif-
pel-
nnn|f3
F2g
(¥ 4R al-r24
Qpé
Qg6
F2¢)
F30 < s
F20 &
R Q&
F3.0 —
F30
&
F2.0 ¢
Q86 —
F2.0 &
006 R &
A clock pulse generator can be con- £20 _ﬂ 44“ ﬂ ﬂ

structed from a self-clocking timer

with a T flip-flop (binary scaler) ———-1
at its output. Q0.6 {
Timer T 7 is restarted with flag T =
F 2.0 each time its time elapses,

i.e. flag F 2.0 has a "1" signal

for one cycle each time the time

elapses.

These pulses from flag F 2.0 act on

the following T flip-flop with the

result that a pulse train with a

mark-space ratio of 1 : 1 appears

‘at output Q P.6. The period dura-

tion of this pulse train is twice

as great as the time of the self-

clocking timer.

-T-—

5.11

5.1.5 Counter functions

Set counter

Counters 8 to 15 are restarted

on power recovery following a

powerfail condition

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
121 KC159 Al 21 C1 01
L1 L KC158 {cu .
Re ¢ SCH1 121 —co —co
— _ —3 s [121s
za| Synary KCspHCY et K&~V e
DE— DE
R Q —R a

The counter is set during the first
scanning cycle if the result of the
logic operation is "1". The counter
remains unchanged during subsequent
processing (irrespective of whether
the result of the logic operation is
"1" or "0"). The counter is set again
(pulse edge evaluation) at the next
first scanning cycle if the result of
the logic operation is "1".

Reset counter

In the above example, the starting value
of the counter 1is 150.
BI and DE are digital outputs. The count

appears at output BI (DE) in BCD.

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
112 A 112 C1 €1
L1 R C1 cu —cu
RS CI AC1 deo i P
ial
1 | = Q44 N e
%0 ;lA %’Eary —Cv BI - —cv sIp-
l 112 ot Inds OEl—
o] 1A Hr aH H 11.2R af-Qa4

The counter is reset when the result of

the logic operation is "1".

The counter remains unchanged if the
logic operation becomes "0".

5.12

Counting up

Original 'STEP 5 representation
Statement Ladder Control system
list diagram flowchart
[1.1KC@18 ATl 21 121 _C1 C1
| l | CUC ———3 cu 121 : cv
12—+ —3 Hs [113s
m | Binary kcgisdey sif- KCge4cy b
] 160 05_01.0 DE}—
Q19 —r e~ H R a-q1.¢
A
=019

The value of the addressed counter is
incremented by 1. The CU function is
effective only on a positive-going
pulse edge (from "0" to "1") of the
result of the logic operation pro-
grammed before CU.

Counting down

A counter with two different inputs
can be used as an up/down counter by
means of the two separate pulse-edge
flags for CU and CD.

Original STEP 5 representation
Statement Ladder Control system
list diagram flowchart
1 20KC925 E\DCI]-“ 11g ! 1
LLL —3 Hco 11g{co
n AT 20 120-|cv {cu
L - Binary Lkc g2s | —3Hs 12045
211 16b S C ;1 KC@54cv &b KcosHev eIl
' 121 %€ Iegd oe}-

The value of the addressed counter is
decremented by 1. The CD function is
effective only on a positive-going
pulse edge (from "0" to "1") of the
logic operation programmed before CD.

5.13

A counter with two different inputs
can be used as an up/down counter by
means of the two separate pulse-edge
flags for CU and CD.

5.1.6 Comparison (relational) operations

Comparing for equal to

Original STEP S representation
Statement | Ladder Control system
list diagram flowchart
IBO IB1 LIBO
|] L IB1 ’
1 C2 =F IBOHC1 F IB0 -
_ - Q1.0 | C1 F
’ Q1.0 =
T IB1 4C2 Qp<: IB1 HC2 QFQ1.0
Q1.0

The operand first specified is compared
with the subsequent operation in keeping
with the comparison function. The result

of the comparison is flagged by condition

codes CCO and CCl.

for cc1 cco RLO
IB0=1B1 0 0 1
IBO<IB1 0 1 0
I80 >IB 1 1 0 0

Comparing for not equal to

The numerical representation of the
operands is taken into account, i.e.
the contents of the accumulators are

interpeted as being fixed-point numbers.

After a comparison for equal to, a jump
can be made to a label (+ 127 words)
with the jump operation JZ = ... (if
RLO = 1).)

Original STEP S representation
Statement | Ladder Control system
list diagram flowchart
I1B0 IB1 LIBO
[L IB1
1 C2 ><F IBo —qC1 F 180 C1 F
#* = Q11 s¢
Q1.1 ><
‘ T IB1 qC2 QK< IB1 —HC2 Q} Q1.1
Q11

The operand first specified is compared
with the subsequent operand in keeping
with the comparison function. The result

of the comparison is flagged by condition
codes CCO and CCl.

for

cc1 CCO | RLO
IB0O=1IB1 0 0 0
IB0O<IB1 0 1 1
IB0>1IB1 1 0 1

The numerical representation of the
operands is taken into account, i.e.
the contents of the accumulators are

interpreted as being fixed-point numbers.

Following a comparison for not equal

to, a jump can be made to a label (+ 127
words) with the jump operation JN = ...
(if RLO = 1).

5.14

Comparing for greater than

Original STEP 5 representation
iStatement | Ladder Control system
list diagram flowchart
IBO IB1 LIB®
| l LIB1
1 C2 >F IBo HC1 F IB0 HC1 F
2 =@81.2
< > a1.2 >
2 = < IB1HC2 Q< IB1 HC2 Qf-Q12
Pt
Q12

The operand first specified is compared
with the subsequent operand in keeping
with the comparison function. The result
of the comparison is flagged by condition
codes CCO and CCl.

for ccl cco RLO
IB0O=1IB1 0 0 0
IBO<IB1 0 1 0
IB0 >IB 1 1 0 1

Comparing for less than

The numerical representation of the
operands is taken into account, i.e.
the contents of the accumulators are
interpreted as being fixed-point numbers.

After a comparison for greater than,

a jump can be made to a label (+ 127
words) with the jump operation JP = ...
(if RLO = 1).

Original STEP S representation
Statement | Ladder Control system
list diagram flowchart
IBO 1IB1 LIBO
| L1B1
€1 Cz2 <F IBO—C1 F IBO —{C1 F
% = Q1.4 < <
Qs
’Tf 1B14c2 Q IB1 4c2 q}-a1s4
Q1.4

The operand first specified is com-
pared with the subsequent operand in
keeping with the comparison function.
The result of the comparison is flagged
by condition codes CCO and CCl.

for cc1 cco RLO
IB0=1B1 0 0 0
IB0<IB1 0 1 1
IB O >IB1 1 0 0

5.15

The numerical representation of the
operands is taken into account, i.e.

the contents of the accumulators are
interpreted as being fixed-point numbers.

After comparing for less than, a jump
can be made to a label (+ 127 words)
with the jump operation JM = ...

(if RLO =1).

Comparing for greater than or equal to

Original STEP S representation
Statement | Ladder Control system
list diagram flowchart
IBO IB1 L IBO
| | L 1B1
(1 C2 >=F 1Bo{C1 °F IBOC1 F
% = Q1.3 5= _
i Q1.3 >=
= F 18142 Q) 1B14c2 q}-01.3
Q13

The operand first specified is compared
with the subsequent operand in keeping
with the comparison function. The result
of the comparison is flagged by condition
codes CCO and CC1.

for cc1 cco RLO
IB0=1B1 0 0 1
IBO0< IB1 0 1 0
IB0>IB1 1 0 1

Comparing for less than or equal to

The numerical representation of the
operands is taken into account, i.e.
the contents of the accumulators are
interpreted as being fixed-point num-
bers.

After comparison for greater than or
equal to, a jump can be made to a label
(+ 127 words) with the jump operation
JC (if RLO =1).

Original STEP S representation
Statement | Ladder Contfrol system
list diagram flowchart
I1B0 1B1 L IBO
] L IB1
C1 C2 <=F IB64C1 F 1B0 dc1 F
2 = Q15 _
g T le1s <
? = < IB1HC2 @ IB1 H4C2 Q015
Q1.5

The operand first specified is compared
with the subsequent operand in keeping
with the comparison function. The result
of the comparison is flagged by condition
codes CCO and CCl.

for cCl1 CCo RLO
IB0=1B1 0 0 1
IBO<IB1 0 1 1
I8 0 >IB 1 1 0 0

The numerical representation of the
operands is taken into account, i.e.
the contents of the accumulators are
interpreted as being fixed-point numbers.

After comparing for less than or equal
to, a jump can be made to a label (+ 127
words) with the jump operation JC = ...
(if RLO = 1).

5.16

5.1.7 Arithmetic operations

Arithmetic operations can only be re-
presented in statement list form.

They add or subtract the contents of
accumulators 1 and 2, using the cor-
responding load operations.

Operation | Parameters |Function

+ F Add
(accu. 1 + accu.2)

- F Subtract
(accu. 2 - accu. 1)

The two accumulators 1 and 2 can be
loaded by two load operations in keeping
with the operands of these load operations.
The contents of the two accumulators

can then be added to each other or one
subtracted from the other.

Example STL

Example: L oW1 [Accu1]— [Accu2
M~
L w2 Wi J—[wi_]
— [z
-F IW1- IW2 =Result
-
Explanation

The right-hand byte of L KF +127
data word 85 is to be
subtracted from the
number +127 and the re-
sult stored in the left-
ggnd byte of data word L DR 85

127
DR 85 74 T DL 85
Result F 53

The constant fixed-point number
+127 1is loaded into accumulator

1; at the same time, the old con-
tents of accumulator 1 are shifted
into accumulator 2.

The right-hand byte of data word
85 is loaded into accumulator 1
and the fixed-point number +127

shifted into accumulator 2.

The contents of accumulator 1

are subtracted from those of ac-
cumulator 2 and the result stored
in accumulator 1.

The contents of accumulator 1
(result) are transferred to the
left-hand byte of data word 85.

Note:

If the number range (-32768 to + 32767) is exceeded, the result of the operation

is undefined (OV = "1")

5.1.8 Other functions

The following operations can only be
represented in statement list form.

Operation | Parameter | Function

STP Stop

NOP O No operation
(all bits reset)

NOP1 No operation
(a1l bits set)
3LD 0 to 255 Display con-
struction state-
ment

5.17

The STOP operation is used if, for example,
the programmable controller has to enter
the Stop status in response to certain
critical plant states or on the occur-
rence of a hardware fault.

The NOPs are used, for instance, for
keeping memory locations free or over-
writing them.

The display construction statement de-
fines the subdivision of program sec-
tions into segments within a block.

5.2 Supplementary operations

Supplementary operations can only be
programmed in FB 1.

Accumulators 1 and 2 can be loaded by
two load operations in keeping with
the operands of these load operations.
The contents of both accumulators can
then be digitally gated.

Explanation

5.2.1 Logic operations

Operation | Description

AW Digital ANDing of accumul-
ators 1 and 2

oW Digital ORing of accumul-
ators 1 and 2.

X OW | Dpigital EXORing of
accumulators 1 and 2.

Example STL

The hexadecimal number L KH 3F84

3F84

H.is to be ANDed

with input word 1 of
inputs IW 1. The

result is to appear in
output word zero of the
outputs (QW 0).

L Jm1
AW

3784, T o

Iw1l 4793
Result AW U780n

The hexadecimal number 3F84 is loaded
into accumulator 1; at the same time,
the old contents of accumulator 1 are
shifted into accumulator 2.

Input word 1 (IW 1) is loaded into ac-
cumulator 1 and the hexadecimal number
shifted into accumulator 2. The con-
tents accumulator 1 are digitally ANDed
with those of accumulator 2 and the
result stored in accumulator 1.

The contents of accumulator 1 (result)
are transferred to outout word. QW O.

The two bit patterns
0101 1110 1000 1011

L KM 01...11

and L KM 01...00
0111 0001 0111 1100
are to be ORed with
each other.

04]

0101 1110 1000 1011
0111 0001 0111 1100
OTTT TTITT ITIT ITIT

T FW 13

Result
oW

The first bit pattern is loaded into
accumulator 1; at the same time, the

old contents of accumulator 1 are shifted
into accumulator 2.

The second bit pattern is loaded into
accumulator 1 and the first bit pattern
shifted into accumulator 2.

The contents of accumulator 1 are ORed
with those of accumulator 2 and the
result stored in accumulator 1.

The contents of accumulator 1 (result)
are transferred to flagword FW 13.

Input word IW 0 is to L DW 12
be compared with data-
word 12 for equality.
The non-identical

bits of the word are
to appear in output

word QW O.

LIWO

DW 12 EA83,
IW 0 68C5

Result m—msg

TQW O

Data word DW 12 is loaded into accumulator
1; at the same time, the old contents of
accumulator 1 are shifted into accumulator
2. Input word IW O is loaded into accumul-
ator 1 and data word L DW 12 shifted

into accumulator 2.

The contents of accumulator 1 are EXORed
with those of accumulator 2 and the

result stored in accumulator 1.

The contents of accumulator 1 (result)

are transferred to output word QW O.

5.18

5.2.2 Conversion functions

Operation | Description

CFW One's complement
CSW Two's complement
The value in accumulator 1

is converted. The result
can be processed in the

accumulator.
Example STL Explanation
The contents of data word L DW 64 Load data word DW 64 into -
DW 64 are to be inverted accumulator 1.
bit by bit and stored in
data word DW 78. CFW Form the one's complement
of the contents of accumula-
DW 64 EAB3, tor 1. The result is in
DW 78 157(:H T DW 78 accumulator 1.
Transfer the contents of ac-
cumulator 1 into data word
DW 78.
The contents of data word L DW 42 Load data word DW 42 into
DW 42 are to be interpreted accumulator 1.
as a fixed-point number and
stored in data word DW 35
with inverted sign. CSW Form the two's complement of
the contents of accumulator 1.
] The result is in accumulator 1.
DW 42 +51 T DW 35 Transfer the contents of ac-
Dw 35 -51 cumulator 1 into data word DW 35.

5.2.3 Shift operations

Operation Description
SLW 0 to 15 Shift left
SRW 0 to 15 Shift right

The parameter of this
statement specifies the
number of bit positions
by which the contents
of accumulator 1 are
shifted to the left
(SLW) or to the right
(SRW). Any bit positions
that become free when
shifting are padded
with zeros.

Example STL Explanation

The last four bits of the LDW1 Load data word 1 into accu-
hexadecimal number 14AF, mulator 1.
in data word DW 1 are to

be truncated and the new SR W4 I Shift the contents of ac-

hexadecimal number 014A cumulator 1 four bit posi-
resulting stored in»datg tions to the right.
word DW 3. The bit positions that become
free when shifting are padded
TDOW3 with zeros.

Transfer the contents of ac-
cumulator 1 to data word DW 3.

Note:
Shift operations are unconditional operations. The last bit shifted out can be
examined by means of a jump operation. A jump can be made with JZ if the bit is
“0" and with JN or JP if the bit is "1", :

5.19

5.2.4 Jump operations Operatian Description

. . u=] Unconditional jump
The jump destination for unconditional o
and conditional jumps is specified as gzeeggﬁﬁgg;t;m:]eggzﬁt_
a symbolic address (max. 4 characters). ly of any conditgons.
In the case of the PG 605U/ and PG 615U
programmers, jump labels MO0...M99 can Jdo= "] Conditional jump
be assigned. The symbolic parameter L .
of the jump statement is identical to ,T!ee§§23155°??1tﬂ3'"p
the symbolic address of the statement RLO is "1". If the
to which the jump is made. When pro- result of the logic
gramming, make sure that the absolute Qﬂ;ratwn Is “0“,ttge
jump displacement does not exceed +127 gndpt;: gfo ?’S‘eggteto
words and note that a STEP 5 statement nyn,
may consist of more than one word.

Y : iz=] Jump if contents of
Jumps over segment boundaries are not accumulator zero.
permissible. This jump is executed

if ‘the contents of
A11 jump operations (with the exception the accumulator are zero.
of JU) depend on the RLO and the con- gztt::f‘f”gﬁ:t;ugge
dition codes in the processor of the is not executed. The
programmable controller. RLO is not changed.

N [Jump if contents of
accumulator not zero.

This jump is executed

if the contents of

the accumulator are ~
not zero. If the contents
are zero, the jump

is not executed. The

RLO is not changed.

JP

:

Jump if contents of
accumulator positive.

The jump is executed if
the ‘contents of the ac-
cumulator are greater
than zero. If the con-
tents of the accumulator
are zero or less than
zero, the jump is not
executed. The RLO is

not changed.

am= [] Jump if contents of
accumulator negative.

This jump is executed

if the contents of

the accumulator are less
than zero. If the contents
are zero or greater

than zero, the jump is
not executed. The RLO is
not changed.

Jo = Jump on overflow

This jump is executed when
an overflow occurs. If there
is no overflow, the

Jjump is not executed. The
RLO is not changed.

—Enter symbolic address
(max. 4 characters)

5.20

Example

Explanation

If none of the inputs of
input word IW 1 is set,
a jump is made to label
IIAN 1Il

If the input word IW 1

and output word QW O are
not identical, a jump is
made back to label "AN 0".
If IW1 and QW 3 are iden-
tical, IW 1 is compared
with data word DW 12.

If IW 1 is greater or
smaller than DW 12, a
jump is made to the
"Destination" 1label.

5.21

STL
ANO : IW
: JZ=AN1
A IW
ANl :L IWl
L QW
XOW
JP=ANO
L Iwl
L Dwl2
F
:JB=Destina-
tion

Desti-:A 112.2
nation

Input word IW 1 is loaded into
accumulator 1. If the contents

of accumulator 1 are equal to
zero, a jump is executed to label
"AN 1", otherwise the next state-
ment (AI 1.0) is executed.

Comparison of input word IW 1

and output word QW3. If the two
words are not identical, individual
bits are set in accumulator 1.

If the contents of accumulator 1
are not zero, a jump is made back
to the "AN 0" label, otherwise the
next statements are executed.

Input word IW 1 is compared with
data word W 12 for greater or less
than. If IW 1 is greater or less
than DW 12, the RLO is set to "1".

If RLO = "1", a jump is made to the
"Destination" label.

If RLO = "0", the next statement is
executed.

5.2.5 Condition codes

The processor of the SIMATIC S5-101U
programmable controller has three con-
dition codes:

o CC 1 Value positive

o CC 0 Value negative

o OVF Overflow

The condition codes are affected by
comparison operations, arithmetic oper-
ations, shift operations and a number
of conversion operations.

Generating condition codes in connection
with comparison operations

The execution of comparison operations
results in the setting of condition
codes CC 0 and CC 1. The overflow bit
is not affected.

The two operands participating in a
comparison are defined as follows:

Example :L DW20 (1st operand)
:L DW21 (2nd operand)
1i=F (comparison operation)

In this example, data word DW 20 is
the 1st operand and data word DW 21
the 2nd operand.

Condition Jump

codes operations
Compared with The following
the 1st oper- jump oper-
and, the 2nd ations are
operand is: executed:

ccijcco
Equal 0 0 Jz
Less 1 JN, JM
Greater 1 0 JN, JP
Note:

Comparison operations affect the result
of the logic operation. If the condition
is satisfied, the RLO is "1". In this
way, the conditional jump operation JB
can be written after a comparison oper-
ation.

Generating condition codes in connection
with arithmetic operations.

Arithmetic operations result in the
setting of all condition codes. This
depends in turn on the contents of the
accumulator (the result of the arith-
metic operation).

Generating condition codes in connection
with fixed-point arithmetic operation:

Generating condition codes in connection
with digital logic.

Digital logic operations result in the
setting of condition codes CC 0 and

CC 1. The overflow bit is not affected.
Setting of the condition codes depends
on the contents of the accumulator after
the operation has been executed.

Condition | Jump

codes operations
The contents of The following
the accumulator Jump oper-
are: ations are

executed:

CCl | cco
Zero (0000) 0 0 Jz
Not zero 1 0 JN, JP

Generating condition codes in connection
with shift operations.

The execution of shift operations results
in the setting of CC 0 and CC 1. The
overflow bit is not affected.

Setting of the condition codes depends

on the status of the last bit pushed

out.

Condition | Jump
codes operations
The .value of the The following
last bit shifted Jjump opera-
out is: tions are
executed:
ccijcco
v oo Jz
"le 110 JN, JP

Generating condition codes in connection
with conversion functions.

Formation of the two's complement (CSN)
affects all condition codes. This depends
on the result of the conversion operation:

Condition -Jump

codes operations
The result after The following
the conversion jump opera-
operation is: tions are

executed:

ccijccojov
< -32768 1]0 |1 }JN, JP, JO
-32768 to -1 0|10 |IN, IM
+1 to +32767 1] 0]0]JN, JP
>+32767 0|11 |JN, dM, JO
(-)65536%) 0] 0|1 {3z, 30

Condition |Jump

codes operations
The result of The following
the arithmetic jump oper-
operation is: ations are

CC1|CCO|OV | executed:
< -32768 1101 1}{JN, Jr, JO
-32768 to -1 | 0| 1| 0]JN, IM
0 0|0}|0}az
+1 to +32767 1|0 |0]|JN JP
> 432767 0|11 1]JN, JM, JO
(-)65536%) 0j0}|1jJz, Jo

*) Result of the arithmetic operation:
-32768 +32768

*) Result of conversion of KH = 0000

Note:

The jump statement and jump destination
must be in the same segment. Only one
symbolic address is permissible for
branch destinations in each segment.

5.22

6.

Binary logic operations

Operation set

Opera- | Parameter Machine code Dep- Aff- Condition £_ | Function
-
tion (hexadecimal) ends ects codes s é
Nord 0 [MWord 1 | on RLO affected £
B0 | 81 [B2 [83 | RO ccl [ceo Jov] xe
Scan the following and AND with
the result of the previous logic
operation:
A I |10.0 to 2.3 co | 00 - - N N - - - | 65 Input for "1
3.0 to 5.3
A Q { 0.0 to 1.3 co| 80 - - N N - - - | 65 Output for "1"
2.0 to 3.3
A F | 0.0 to 63.7 80 | 00 - - N N - - - |74 Flag for "1"
A T 10 tol5 F8 | 00 - - N N - - - | 69 Timer for "1"
A C |0 tol5 B8 | 00 - - N N - - - | 64 Counter for " > 0"
AN I |0.0 to 2.3 EO | 00 - - N N - - - | 66 Input for "O"
3.0 to 5.3
AN Q | 0.0 to 1.3 EO | 80 - - N N - - - | 66 Output for "O"
2.0 to 3.3
AN 0.0 to 63.7 AG | 00 - - N N - - - |75 Flag for "O"
AN T |0 tol5 FC | 00 - - N N - - - |70 Timer for "0"
AN 0 to 15 BC | 00 - - N N - - - | 65 Counter for "=0"
Scan the following and OR with
the result of the previous loaic
operation:
0 I [0.0 to 2.3 c8 | 00 - - N N - - - |65 Input for "1"
3.0 to 5.3
0 Q {0.0 to 1.3 C8 | 80 - - N N - - - | 65 Output for "1"
2.0 to 3.3
F |10.0 to 63.7 88 | 00 - - N N - - - |74 Flag for "1"
0 T |0 tol5 F9 | 00 - - N N - - - |71 Timer for "1"
C |0 to 15 B9 | 00 - - N N - - - | 64 Counter for " > 0"
ON I [0.0 to 2.3 E8 | 00 - - N N - - - | 66 Input for "0O"
3.0 to 5.3
ON Q |0.0 to 1.3 E8 | 80 - - N N - - - | 66 Output for "O"
2.0 to 3.3
ON 0.0 to 63.7 A8 | 00 - - N N - - - |76 Flag for "O"
ON 0 to 15 FD | 00 - - N N - - - 172 Timer for "0"
ON 0 to 15 BD | 00 - - N N - - - | 67 Counter for "=0"
+ Relative addressl
+ Bit addressl
) BF | 00 - - N Y - - - |63 Right paranthesis
A(BA | 00 - - N Y - - - | 66 ANDing of bracketed
expressions
o(BB | 00 - - N Y - - - | 69 ORing of bracketed
expressions
0 FB | 00 - - N Y - - - | 48 ORing of AND operations

Up to 6 bracketing levels can be programmed.

Setting/resetting operations

Opera- | Parameter Machine code Dep- Aff- Condition .E,\ Function
tion (hexadecimal) ends ects codes 3 E
Word O Word 1 on RLO affected ‘gz
B0 [Bl [B2 [B3 |RLO ccl Jeeo Jov | ze
S 1] 0.0 to 2.3 poj| 00 - - Y Y - - -1 70 Set an input to "1"
3.0 to 5.3 . (in the (PII)
S Q(0.0 to 1.3 DoO| 80 - - Y Y - - -1 70 Set an output to "1"
3.0 to 3.3 (in the PIO)
S F| 0.0 to 63.7 90| 00 - - Y Y - - - 74 Set a flag
R 1| 0.0to2.3 Fol oof -| - ¥ Y -1 -| ~-{ 70 | Reset an input to "0"
3.0 to 5.3 (in the PII)
R Q| 0.0 to 1.3 FO| 80 - - Y Y - - -{ 70 Reset an output to "0"
2.0 to 3.3 (in the PIO)
R F| 0.0 to 63.7 BO| 00 - - Y Y - - - 74 Reset a flag to "O"
= I} 0.0 to 2.3 D8| 00 - - N Y - - -] 66 Assign an input
3.0 to 5.3 (in the PII)
= Q| 0.0 to 1.3 D8| 80 - - N Y - - -| 66 Assign an output
2.0 to 3.3 (in the PIO0)
= Fl 0.0 to 63.7 98| 00 - - N Y - - -1 72 Assign a flag
+ Relative address |
Timer and counter functions
Opera- | Parameter Machine code Dep- Aff- Condition £_ | Function
tion (hexadecimal) ends ects codes g g
Word 0 [Word 1 | on RLO affected £
B0 [Bl | B2 [B3 |RLO ccl Jceo Jov] e
SP T| O to 15 34| 00 - - Y Y - - -] 134| Start timer as pulse
SE T} 0 tol5 1c|{ 00 - - Y Y - - -| 120 Start timer as extended pulse
SR T| O tol5 241 00 - - Y Y - - -| 136| Start timer as "ON" delay
SS T| 0tol5 2C| 00 - -1y Y - - -] 120| Start timer as latching "ON"
delay
SF T| 0 tol5 14 00 - - Y Y - - -| 136] Start timer as "OFF" delay
R T| 0 to 15 3C| 00 - - Y Y - - - 64| Reset timer
S C| 0 tol5 5C| 00 - - Y Y - - -| 114] Set counter
R C| 0 to 15 7C| 00 - - Y Y - - - 66| Reset counter
CU C| 0tol5 6C| 00 - - Y Y - - - 82| Count up
CD C| 0 to15 541 00 - - Y Y - - - 89| Count down
+ Relative addressl

Load and transfer operations

Opera- | Parameter Maschine code Dep- Aff- Condition .E,_ Function
tion (hexadec imal) ends | ects codes 5§
Word 0 [Word 1 | on RLO | affected S
B0 [B1 [B2 [B3 [RLO ccl Jeeo Jov] e
L IB |0to5 4A | 00 - - N N - - - 61 | Load an-input byte (from the PII)
L IW (O to4d 52 | 00 - - N N - - - 65 | Load an input word (from the PIO)
L QB [0 to3 4A | 80 - - N N - - - 61 | Load an output byte (from the PIO)
L QW |O to2 52 | 80 - - N N - - - 65 | Load an output word (from the PIO)
L FB |0 to 63 0A | 00 - - N N - - - 61 | Load a flag byte
L FW [0 to 62 12 | 00 - - N N - - - 67 | Load a flag word
L DL |0 to 255 22 | 00 - - N N - - - 65 | Load data (left-hand byte)
L DR [0 to 255 2A | 00 - - N N - - - 66 | Load data (right-hand byte)
L DW |0 to 255 32 | 00 - - N N - - - 78 | Load data (word)
L T |0 to 15 02 | 00 - - N N - - - 67 | Load a time
L C [0 to 15 42 | 00 - - N N - - - 68 | Load a count
L PB |0 to5 72 | 00 - - N N - - - | 116 | Load a peripheral byte of the
inputs

L DT |0 to 15 oc | 00 - - N N - - - | 124 | Load a time (BCD)
L DC |0 to 15 4c | 00 - - N N - - - | 122 | Load a count (BCD)
L KC |2 alphanumeric| 30 | 10 | 00 |00 N N - - - 63 | 2 ASCII characters

characters
L KM |Bit pattern 30 [80 | 00 |00 N N - - - 63 | as bit pattern

(16 bits)
L KH |[|O to FFFF 30 | 40 00 |00 N - - - 63 | in hexadecimal code
L KF |0 to (216-1) 30 | 04 |00 |00 N - - - 63 | as a fixed-point number
L KY |0 to 255, 30 | 20 |00 |OO N - - - 63 | 2 bytes

each byte
L KT]0.0 to 999.3 30] 02 |00 |00 - - - 63 | as time
L KC |0 to 999 30 { 01 [00 (00 - - - 63 | as count

+ Constant (1 word) I

Load and transfer operations (cont.)

Opera- | Parameter Maschine code Dep- Aff- Condition %,? Function
tion (hexadecimal) ends ects codes 3 §
Word 0 [Word 1 |on RLO affected Er
BO [B1 | B2 [B3 | RLO ccl Jcco Jov | se
T IB|O0tob 48 | 00 - - N N - - - 55 | Transfer to an input byte
(in the PII)
T IW |O0tod 53 | 00 - - N N - - - 58 | Transfer to an input word
(in the PII)
T Q@ [0 to3 48 | 80 - - N N - - - 55 | Transfer to an output
(in the PIO)
T QW |0 to?2 53 | 80 - - N N - - - 58 | Transfer to an output word
(in the PIO)
FB | 0 to 63 0B | 00 - - N N - - - 52 | Transfer to a flag byte
FW | 0 to 62 13 | 00 - - N N - - - 61 | Transfer to a flag word
T DR |0 to 255 2B | 00 - - N N - - - 57 | Transfer to data
(right-hand byte)
T DL {0 to 255 23 | 00 - - N N - - - 54 | Transfer to data
(1eft-hand byte)
T DW |0 to 255 33 | 00 - - N N - - - 61 | Transfer to data (word)
T PB |0 to3 73 | 00 - - N N - - - 90 | Transfer to peripheral
byte of outputs with updating
of the PIO
+ Relative address
Comparison operations
Opera- | Parameter Maschine code Dep- Aff- Condition E,‘ Function
tion (hexadecimal) ends | ects codes X
Word O Word 1 on RLO affected ‘:;)E
B0 [BL [B2 [B3 |RLO cct Jceo Jov | Z=
Compara fixed-point numbers for
I =F 21 | 80 - - N N Y Y - 87 | Equal to
><F 21 | 60 - - N N Y Y - 87 | Not equal to
>F 21 | 20 - - N N Y Y - 87 | Greater than
>=F 21 | AO - - N N Y Y - 87 | Greater than or equal to
<F 21 | 40 - - N N Y Y - 87 | Less than
<=F 21 | co - - N N Y Y - 87 | Less than or equal to
Arithmetic operations
Opera- | Parameter Maschine code Dep- Aff- Condition "E'? Function
tion (hexadecimal) ends | ects codes sE
Word O Word 1 on RLO affected ‘é);
B0 | BL [B2 [B3 |RLO ccl Jcco Jov | H=
+F 79 | 00 - - N N Y Y 58 | Fixed-point addition
-F 59 | 00 - - N N Y Y 54 | Fixed-point subtraction
Block calls
Opera- | Parameter Maschine code Dep- Aff- Condition %,\ Function
tion (hexadecimal) ends | ects codes X
Word O Word 1 on RLO affected %Tn;
BO | BL | B2 [B3 |RLO cct Jcco Jov | &=
BE 65 | 00 N Y - - - 42 | Block end
BEC 05 | 00 Y Y - - - 46 | Block end conditional
BEU 65 | 01 Y Y. - - - 42 | Block end unconditional

Other operations

Opera- | Parameter Machine code Dep- Aff- Condition %A Function
tion (hexadecimal) ends | ects codes sE
Word 0 [Word I | on RLO affected 5
BO | Bl | B2 | B3 | RLO ccl Jcco Jov | 2=
NOP O 00| 00 N N - - - 40 | No operation
(a1l bits reset)
NOP 1 FF| FF N N - - - 40 | No operation
(a11 bits set)
STP 70| 03 N N - - - 44 | STOP
' Segment end for programming
in statement list
BLD 10(00 N N - - - 40 | Statement for constructing
displays in LAD form on
the programmer
Logic operations (word mode) (supplementary operations)
AW 411 00 N N X X - 55 | ANDing of accumulators 1 and 2
oW 491 00 N N X X - 55| ORing of accumulators 1 and 2
XOW 51| 00 X X - 55 | Exclusive-ORing of accumulators
1 and 2
Conversion operations (supplementary operations)
Opera- | Parameter Machine code Dep- Aff- Condition 'E’“ Function
tion (hexadecimal) ends ects codes s E
Word O Word 1 on RLO affected ‘ég_
B0 | B1 | B2 [B3 |RLO ccl [cco [ov | =
CFW 01| 00 - - N N - - - 42 | Formation of one's complement
(fixed point)
CSW 09| 00 - - N N Y Y Y 62 | Formation of two's complement
(fixed point)
Shift operations (supplementary operations)
Opera- | Parameter Machine code Dep- Aff- Condition %A Function
tion (hexadecimal) ends | ects codes 58
Word 0 Word 1 on RLO affected ‘ég_
BO | Bl | B2 [B3 |RLO ccl Jcco Jov | =
SLW 0 to 15 61| 00 - - N N Y Y - 49 | Shift left (16 bits)
SIW 0 to 15 69| 00 - - N N Y Y - 47 | Shift right (16 bits)
+ Number of shifts | + 10 x Number of shifts|
Jump operations (supplementary operations)
Opera- | Parameter Machine code Dep- Aff- Condition ,EA Function
NN
tion (hexadecimal) ends ects codes s E
Word 0 [Word 1 |on RLO affected S
BO | Bl | B2 | B3 | RLO ccl [cco Jov] 2=
JU = |Symbolic address|2D | 00 - - N N - - - 55 | Unconditional jump
JC = |Symbolic address|FA | 00 - - Y Y - - - 62 | Conditional jump
(Jump condition: RLO)
JZ = [Symbolic address|{45 | 00 - - N N - - - 62 | Conditional jump
(Jump condition: CC 1, CC 0)
JN = [Symbolic address|35 | 00 - - N N - - - 62 | Conditional jump
(Jump condition: CC 1, CC 0)
JP = [Symbolic address|15 | 00 - - N N - - - 62 | Conditional jump
(Jump condition: CC 1, CC 0)
JM = |Symbolic address|25 | 00 - - N N - - - 62 | Conditional jump
(Jump condition: CC 1, CC 0)
JO = [Symbolic address|OD | 00 - - N N - - - 57 | Conditional jump
(Jump condition: OV)
+ Jﬁmp disp1acementl

SIEMENS AKTIENGESELLSCHAFT Order No. EWA 4NEB 810 2119-02c
Printed in the Federal Republic of Germany

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

