# MDA1200, MDA1201 MDA1202, MDA1204 **MDA1206**

# **Designers Data Sheet**

#### **FULL WAVE BRIDGE RECTIFIER ASSEMBLIES**

... utilizing inidvidual hermetically sealed metal case rectifiers interconnected and then encapsulated in plastic to provide a single rugged package. Devices are available with voltages from 50 to 600 Volts with these additional features.

- Slip On Terminals
- High Surge Capability
- Output Current Ratings for Both Case and Ambient Conditions

#### Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

MAXIMUM RATINGS (To = 25°C unless otherwise noted.)

| Rating                                                                                                                               | Symbol              | MDA<br>1200 | MDA<br>1201 | MDA<br>1202 | MDA<br>1204 | MDA<br>1206 | Unit  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                               | VRRM<br>VRWM<br>VR  | 50          | 100         | 200         | 400         | 600         | Volts |
| RMS Reverse Voltage                                                                                                                  | VR(RMS)             | 35          | 70          | 140         | 280         | 420         | Volts |
| DC Output Voltage<br>Resistive Load<br>Capacitive Load                                                                               | Vdc                 | 30<br>50    | 62<br>100   | 124<br>200  | 250<br>400  | 380<br>600  | Volts |
| Average Rectified Forward Current<br>(Single phase bridge, resistive load,<br>60 Hz) T <sub>A</sub> = 55°C<br>T <sub>C</sub> = 100°C | ю                   | 4           |             | 4.5<br>12   |             | -           | Amp   |
| Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)                                                           | IFSM                | -           |             | - 300       |             | _           | Amp   |
| Operating and Storage Junction Temperature Range                                                                                     | Tj,T <sub>stg</sub> | -           |             | 5 to +      | 75          | _           | °C    |

## THERMAL CHARACTERISTICS

| Characteristic                          |                              | Symbol                                       | Max         | Unit |  |
|-----------------------------------------|------------------------------|----------------------------------------------|-------------|------|--|
| Thermal Resistance, Junction to Ambient | Each Die<br>Effective Bridge | R <sub>Ø JA</sub><br>R <sub>Ø JA</sub> (EFF) | 28<br>17.15 | °C/W |  |
| Thermal Resistance, Junction! to Case   | Each Die<br>Effective Bridge | R <sub>ØJC</sub>                             | 10<br>3.75  | °C/W |  |

## ELECTRICAL CHARACTERISTICS (T<sub>C</sub> = 25°C unless otherwise noted.)

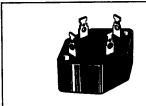
| Characteristic                               | Symbol | Тур  | Max  | Unit  |
|----------------------------------------------|--------|------|------|-------|
| Instananeous Forward Voltage (Per Diode) (1) | ٧F     |      |      | Volts |
| (ig = 18.9 A)                                | l '    | 0.94 | 1.05 |       |
| (iF = 18.9 A, TJ = 175°C)                    |        | -    | 0.9  |       |
| Reverse Current                              | ¹R     | -    | 0.5  | mA    |
| (Rated VR applied to ac terminals,           |        | l    | 1    |       |
| + and - terminals open)                      | 1      | 1    | I ]  |       |

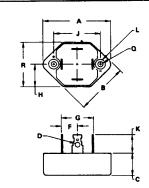
(1) Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2.0%.

#### MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic case with epoxy fill. POLARITY: Terminal-designation embossed on case +DC output

-DC output AC not marked


MOUNTING POSITION: Any, highest heat transfer efficiency accomplished through

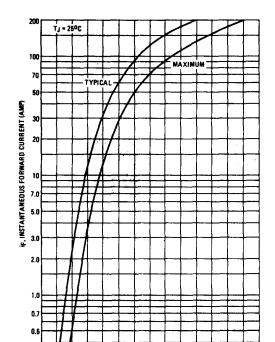

the surface opposite the terminals. WEIGHT: 100 grams (approx.)

TERMINALS: Readily solderable, corrosion resistant, suitable for slip-on terminals.

#### SINGLE-PHASE **FULL-WAVE BRIDGE**

12 AMPERE 50 thru 600 VOLTS






|     | MILLIMETERS |       | INCHES |        |  |
|-----|-------------|-------|--------|--------|--|
| DIM | MIN         | MAX   | MIN    | MAX    |  |
| A   | 56.59       | 57.68 | 2.228  | 2,270  |  |
|     | 43.82       | 44.83 | 1.725  | 1.785  |  |
| C   | 21.59       | 22.61 | 0.850  | 0.890  |  |
| 0   | 3.43        | 3.78  | 0.135  | 0.148  |  |
| F   | 16.00       | 17.02 | 0.830  | 0.670  |  |
| 6   | 32.51       | 33.53 | 1.280  | 1.320  |  |
| H   | 21.91       | 22,41 | 0.8625 | 0.8825 |  |
| 1   | 43.9        | 4 BSC | 1.73   | 0 BSC  |  |
| K   | 12.88       | 13.89 | 0.507  | 0.547  |  |
|     | 7.24        | 7,49  | 0.285  | 0.298  |  |
| 0   | 3,94        | 4.19  | 0.155  | 0.168  |  |
| _B_ | 43.62       | 44,83 | 1.725  | 1.785  |  |

#### NOTES:

- 1. DIM "L" IS 8.35 (0.250) DEEP; DIM "Q" IS THRU HOLE.
- 2. MOUNTING HOLES WITHIN 0.25 mm (0.010) DIA OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION.

CASE 298-02



VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

0.3

0.2

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

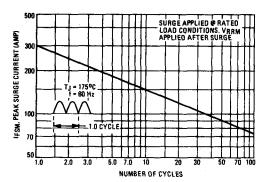
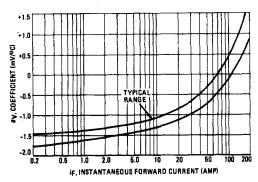
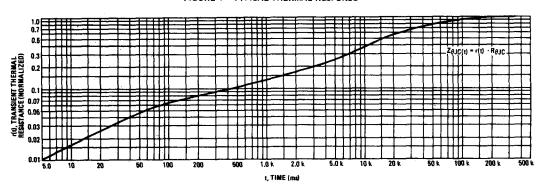
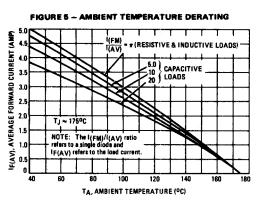
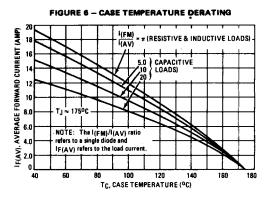



FIGURE 3 – FORWARD VOLTAGE TEMPERATURE COEFFICIENT



FIGURE 4 - TYPICAL THERMAL RESPONSE

1.8



## MAXIMUM CURRENT RATINGS, BRIDGE OPERATION





TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)

FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY

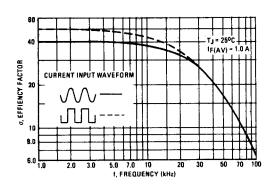



FIGURE 8 - CAPACITANCE

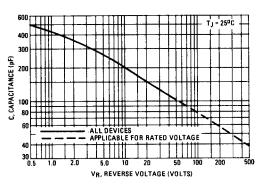



FIGURE 9 - REVERSE RECOVERY TIME

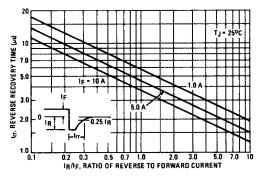
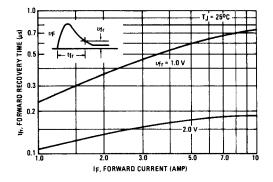
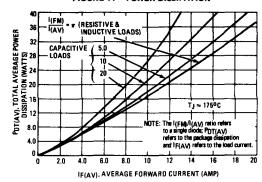





FIGURE 10 - FORWARD RECOVERY TIME



#### FIGURE 11 - POWER DISSIPATION



NOTE 1 - THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)  $^{\Delta T}J_1 = R_{\theta 1} P_{D2} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$ 

Where  $\triangle T_{J1}$  is the change in junction temperature of diode 1

Re1 thru 4 is the thermal resistance of diodes 1 through 4.

PD1 thru 4 is the power dissipated in diodes 1 through 4  $K\theta2$  thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)  $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$ 

Where: P<sub>DT</sub> is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)

simplifies to

(3) 
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$
  
For the condition where  $P_{D1} = P_{D2} = P_{D3} = P_{D4} \cdot P_{DT} = 4P_{D1}$   
equation (3) can be further simplified and by substituting into equation (2) results in

(4) 
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

For the MDA1200 rectifier assembly, thermal coupling between opposite diodes is 10% and between adjacent diodes is 20% when the case temperature is used as a reference. Similarly for ambient mounting, thermal coupling between opposite diodes is 45% and between adjacent diodes is 50%.

#### NOTE 2 - SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown in circuits A and B of Figure 12. The current derating date of Figures 5 and 6 apply to the standard bridge circuit (A) where  $|_{A} = |_{B}$ . For circuit B where  $|_{A} \neq |_{B}$ , derating information can be calculated as follows:

(5) TR(MAX) = TJ(MAX) - 4TJ1

Where  $T_{R\left(MAX\right)}$  is the reference temperature (either case or ambient)

 $\Delta T_{J1}$  can be calculated using equation (3) in Note 1.

For example, to determine  $T_{C(MA|X)}$  for the MDA1200 with the following capacitive load conditions:

I<sub>A</sub> = 10 A average with a peak of 46 A

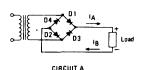
IB = 5.0 A average with a peak of 35 A

First calculate the peak to average ratio for  $I_A$ ,  $I_{FM}/I_{AV} = 46/5.0 = 9.2$ . (Note that the peak to average ratio is on a per diode basis and each diode provides 5.0 A average).

From Figure 11, for an average current of 10 A and an  $I_{(FM)}/I_{(AV)}$  = 9.2 read  $P_{DT(AV)}$  = 21 watts or 5.25 watts/diode. Thus  $P_{D1}$  =  $P_{D3}$  = 5.25 watts.

Similarly, for a load current  $l_B$  of 5.0 A, diode #2 and diode #4 each see 2.5 A average resulting in an  $l_{(FM)}/l_{(AV)} = 14$ .

Thus, the package power displaying for 5.0 A is 10 watts or


2.5 watts/diode. :  $P_{D2} = P_{D4} = 2.5$  watts. The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1  $\Delta T_{J1} = 10$  [5.25 + 0.1 (2.5) + 0.2 (5.25) + 0.2 (2.5)]

ΔT<sub>J1</sub> ≈ 70°C

Thus T<sub>C</sub>(MAX) = 175 - 65 = 105°C The total package dissipation in this example is:

 $P_{DT} = 2 \times 5.25 + 2 \times 2.5 = 15.5$  watts

# FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE



D4 Load 1

CIRCUIT 8