6H4П (двойной триод)

Назначение: усиление колебаний низкой частоты.

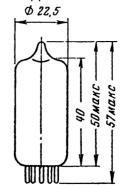
Габаритный чертеж и схема соединений электродов с внешними выводами лампы 6H4П. Ф 22,5

1 - анод первого триода;

2 - сетка первого триода;

3 - катод первого триода;

4 - подогреватель;


5 - подогреватель;

6 - анод второго триода;

7 - сетка второго триода;

8 - катод второго триода;

9 - экран.

Основные данные

Напряжение накала Ток накала Напряжение анода номинальное (постоянное)	6,3 ± 0,6 В 300 ± 40 мА 250 В
Напряжение анода предельное (постоянное) Напряжение анода предельное (постоянное) при запертой	300 B
лампе (при токе анода не более 5 мкА)	470 B
Ток анода каждого триода	3 ± 0,85 мА
Ток катода каждого триода предельный	8 MA
Напряжение сетки номинальное (постоянное)	Минус 4 В
Напряжение сетки наименьшее (постоянное) при запертой	
лампе (при токе анода не более 5мкА)	Минус 30 В
Напряжение сетки при токе анода 0,01 мА	Минус 8,5 В
Обратный ток сетки каждого триода	0,1 мкА
Мощность, рассеиваемая каждым анодом, предельная	1,5 Вт
Напряжение между катодом и подогревателем предельное	
(постоянное):	000 B
при отрицательном потенциале подогревателя	200 B
при положительном потенциале подогревателя	100 B
Крутизна характеристики каждого триода	$1,75 \pm 0,35 \text{ mA/B}$
Коэффициент усиления каждого триода	41± 7 1 МОм
Сопротивление в цепи сетки предельное Емкость входная каждого триода	1 МОМ 1,55 ± 0, 35 пФ
Емкость выходная каждого триода Емкость выходная первого триода	1,35 ± 0, 35 пФ 1,4 ± 0,35 пФ
Емкость выходная первого триода	1,4 ± 0,33 ΠΦ 1,6 ± 0,4 ΠΦ
Емкость проходная каждого триода	1,6 ± 0,∓ пФ 1,6 пФ
Емкость между анодами	0,1 пФ
Оформление - стеклянное миниатюрное	0 ,
Macca	15 г

Источники:

1) Ю.Л. Голубев, Т.В. Жукова "Электровакуумные приборы", "Энергия", Москва, 1969, 296 стр.

Дата создания: октябрь 2003. Откорректирован:

Информационный портал "Магия ламп"

www.magictubes.ru